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SMARTHEART: DEEP LEARNING-BASED ANALYSIS OF 12-LEAD 
ELECTROCARDIOGRAMS FOR CARDIOVASCULAR DISEASE RISK PREDICTION
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In the US, Heart Disease is the leading cause of death for both 
men and women, causing about 1 in every 4 deaths. The most 
common method to diagnose Heart Disease is by obtaining a 
cardiovascular procedure called an electrocardiogram (ECG), 
which consists of placing electrodes on various parts of the body 
to form a graph of the heart’s electrical activity. 
Because of limitations in trained cardiologists and existing deep 
learning models, we’re seeking to answer the following 
question:

How can state-of-the-art deep learning be leveraged for 
automated analysis of 12-lead ECGs?

We’re currently working on accurately classifying ECGs as either 
healthy or with 1 of 27 Heart Diseases. We source our ECGs 
from online datasets, and we also obtain real, paper ECGs from 
a local cardiologist. 

We’ve tried 3 different machine-learning based approaches to 
this problem. Before training the model, we first processed the 
ECG as a 12 by 7500 grid, derived from 12 leads (signals) and 
7500 (500Hz for 15 seconds) sampled points on each lead. 

Firstly, we used a standard convolutional neural network (CNN), 
which runs 1D convolutions across our input ECG to eventually 
achieve an output layer that classifies the ECG into 1 of 27 
diseases. 

Secondly, we tried dividing each ECG into 5 segments of equal 
length, which are then passed through CNNs to extract a feature 
vector. These vectors are then passed through a transformer 
encoder to achieve our final output classification. 

Finally, we applied image classification pipelines on image 
representations of ECGs. We use CNN encoders to transform each 
lead into a 2D array, before concatenating them together. We then 
pass the leads into a 2D convolution to obtain an RGB image 
representation, and we classify the image into our final output. 

Feature Extraction Head Accuracy (%)

1D CNN None
Transformer

75.84 ± 2.04
79.98 ± 0.92

1D ResNet None
Transformer

80.14 ± 0.92
81.43 ± 0.49

# of Splits Data Augmentation? Training Accuracy (%) Validation Accuracy (%)

3 No
Yes 

94.36 ± 2.75
72.90 ± 3.18

43.67 ± 1.54
53.78 ± 0.86

5 No 
Yes

92.62 ± 1.06
93.75 ± 3.24

41.59 ± 0.80
49.84 ± 1.19

Pipeline Data Augmentation? Training Accuracy (%) Validation Accuracy (%)

ResNet-50 No
Yes 

94.82 ± 1.72
91.28 ± 1.89

49.88 ± 1.64
43.51 ± 2.14

DenseNet-121 No 
Yes

82.91 ± 1.60
90.14 ± 1.82

50.91 ± 1.52
43.49 ± 1.48

Approach 1

Approach 2

Approach 3

In the future, we want to work with hybrid ECGs, created by 
adding anomalous regions from a diseased ECG onto a healthy 
ECG. We hypothesize that using these hybrid ECGs, we’d be able 
to forecast a patient’s risk for later diagnosis of a heart disease, 
which we’ve been aiming to do. 

Our goals for using hybrid ECGs are to evaluate the accuracy of 
generated hybrid ECGs, and to apply these generated hybrid 
ECGs for risk prediction. So far, we’ve developed a theoretical 
implementation of generating hybrid ECGs and evaluating their 
accuracy. 
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